Direct Fluorination of Diarylacetylenes to Diaryltetrafluoroethanes with Convenient F₂ Equivalent Nitrosonium Tetrafluoroborate-Pyridinium Polyhydrogen Fluoride¹

Chentao York, G. K. Surya Prakash,* and George A. Olah*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661

Received June 16, 1994

Selective fluorination of organic compounds is of considerable interest in medicinal and materials' chemistry.² Elemental fluorine diluted with inert gases (such as N_2 , He, etc.) is increasingly used in organic fluorinations.³ But the procedure still represents problems for the average laboratory. A convenient F_2 equivalent reagent is therefore of substantial interest.

Direct fluorination of acetylenes to tetrafluoroethanes have been reported. Addition of F_2 gas to diphenylacetylene in methanol solution led to formation of tetrafluorodiphenylethane in 23% yield.⁴ Addition of fluorine diluted in nitrogen gas to diarylacetylenes in Freon 11 also yielded terafluoroethanes.⁵ However, in both reactions due to high reactivity of elemental fluorine, many byproducts were obtained. In 1986, Rozen et al. reported the reaction of alkynes with excess IF prepared directly from I_2 and F_2 .^{6a} In the case of diphenylacetylene, the product 1,1-difluoro-2,2-diiododiphenylethane was subsequently converted to 1,1,2,2-tetrafluorodiphenylethane in 60% yield. However, the reaction was carried out only in the case of diphenylacetylene and preparation of IF is inconvenient in most laboratories. Xenon difluorideinduced tetrafluorination of phenylacetylenes has also been reported.^{6b}

In our continued investigation of fluorination reactions we would like to report direct one-step tetrafluorination of diarylacetylenes with nitrosonium tetrafluoroborate $(NO^+BF_4^-)$ and pyridinium polyhydrogen fluoride (PPHF) reagent⁷ which acts as a convenient in situ F_2 equivalent reagent.

 $NO^+ BF_4^-$ is completely soluble in PPHF (60 wt % HF) at 0 °C. To this clear colorless solution was dropwise added diphenylacetylene in CH_2Cl_2 and the resulting red colored mixture was stirred under nitrogen for 24 h at room temperature. After aqueous workup 1,1,2,2-tetrafluorodiphenylethane was obtained in 75% yield. Under similar reaction conditions, other tetrafluoroethanes were obtained from the corresponding diarylacetylenes

substrate	products	yield ^(a)
Ph-C≡ C →	PhCF ₂ CF ₂ Ph	75
	PhCF2CF2-CH3	52
Ph-C≡ C-√-CF ₃	PhCF ₂ CF ₂ CF ₃	45
Ph-C≡ C	PhCF2CF2-F	50
Ph-C≡ C		38
	PhCF2CF2CH2CH3	39
	+ PhCF ₂ CF = CHCH ₃	45

(a) Isolated yields

in 38-75% yields (see Table 1). The major byproducts were α, α -difluoro ketones and benzoic acid.

When 1-phenyl-1-butyne was allowed to react with the NO⁺BF₄⁻ and PPHF reagent system, in addition to 1-phenyl-1,1,2,2-tetrafluorobutane (39%), 1-phenyl-1,1,2trifluoro-2-butene (45%) was also isolated. In the case of 4-octyne a more complex product mixture was obtained and isolation of discernible products proved to be difficult.

The proposed mechanism for the fluorination of diphenylacetylene 1 is shown in Scheme 1. Initially "NOF" generated from NO⁺BF₄⁻ and PPHF adds to the triple bond to give 1-fluoro-2-nitrosostilbene (2). In the acidic solution, 2 is protonated to the corresponding oximino cation 3, which then reacts with fluoride ion to produce difluoro ketoxime 4. The ketoxime 4 undergoes further nitosative fluorination to $5.^8$ The intermediate 5 is again protonated to 6 under acidic conditions and 6 subsequently undergoes nucleophilic displacement by fluoride ion to 1,1,2,2-tetrafluoro 7 and $H_2N_2O_2(8)$ (8 decomposes to N_2O and H_2O^9). The mechanism is in accord with that which we earlier proposed for the conversion of ketoximes to gem-difluoro compounds using NO⁺BF₄⁻ in PPHF.⁷

In the case of 1-phenyl-1-butyne, 1-phenyl-1,1,2-trifluorobutene is also produced. The mechanism for the formation of trifluoroalkene product is suggested in Scheme 2 involving an intermediate such as 6 followed by elimination which competes with tetrafluorination.

In summary, a novel and convenient method for the direct fluorination of arylacetylenes to the corresponding tetrafluoroethanes using NO⁺BF₄⁻ PPHF is reported. We are continuing studies of the reaction of this F_2 equivalent reagent system with other substrates.

Experimental Section

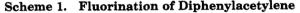
General Information. Diarylacetylenes were prepared by reacting iodoarenes with cuprous phenylacetylide in refluxing pyridine.¹⁰ Pyridinium polyhydrogen fluoride (60 wt % HF) can

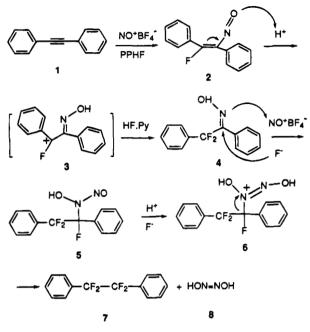
⁽¹⁾ Synthetic Methods and Reactions. Part 192. For part 191 see Olah, G. A.; VanVliet, D. S.; Wang, Q.; Prakash, G. K. S. Synthesis, in press.

^{(2) (}a) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Willey and Sons: New York, Chichester, Brisbane, Toronto, Singapore 1991. (b) Kitazume, T.; Ohnogi, T.; Ito, K. J. Am. Chem. Soc. 1990, 112, 6608. (c) Walba, D. M.; Razvazi, H. A.; Clark, N. A.; Parmar, D. S. J. Am. Chem. Soc. 1988, 110, 8686.

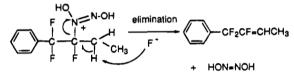
⁽³⁾ Rozen, S. Acc. Chem. Res., 1988, 21, 307.
(4) Merritt, R. F. J. Org. Chem. 1967, 32, 4124.

⁽⁵⁾ McEwen, W. E.; Guzikowski, A. P.; Wolf, A. P. J. Fluorine Chem. 1984, 25, 169.


^{(6) (}a) Rozen, S.; Brand, M. J. Org. Chem. 1986, 51, 222. (b) Zupan,


M.; Pollak, A. J. Org. Chem. 1974, 39, 2646.
 (7) York, C.; Wang, Q.; Prakash, G. K. S.; Olah, G. A. Synlett 1994, 6. 425.

^{(8) (}a) Doyle, M. P.; Wierenga, W.; Zaleta, M. A. J. Org. Chem. **1972**, 37, 1597. (b) Kliegman, J. M.; Barnes, R. K. J. Org. Chem. **1972**, 37, 4223. (c) Rogic, M. M.; Vitrone, J.; Swerdloff, M. D. J. Am. Chem. Soc. 1977, 99, 1156.


⁽⁹⁾ Austin, A. T. Sci. Prog. (Oxford) 1961, 49, 619.

⁽¹⁰⁾ Castro, C. E.; Stephens, R. D. J. Org. Chem. 1963, 28, 2163.

Scheme 2. Fluorination of 1-Phenyl-1-butyne

be conveniently prepared in the laboratory by condensing the needed amount of anhydrous hydrogen fluoride at low temperature (-78 °C) into a polyethylene bottle containing pyridine in a well-ventilated hood.¹¹

Typical procedure for the reaction of diphenylacetylene and NO⁺BF₄⁻/PPHF (60 wt % HF). Diphenylacetylene (0.356 g, 2 mmol) in CH₂Cl₂ (2 mL) was added dropwise by syringe to a 50 mL polyethylene bottle containing NO⁺BF₄⁻ (0.70 g, 6 mmol) and PPHF (8 mL, 60 wt % HF) at 0 °C under nitrogen. The mixture was stired for 24 h at room temperature. The reaction mixture was quenched with ice water (100 mL) and extracted with diethyl ether (3 \times 25 mL). The combined organic layer is washed with 5% NaHCO₃ (50 mL) and water (2 \times 50 mL) and dried over MgSO₄. After evaporation of the solvent, the crude product chromatographed on a silica gel columm (pentane as eluent). **Tetrafluorodiphenylethane** was obtained as white crystals (0.38 g, 75% yield): mp 120-121 °C (lit.¹² mp 122-123 °C); ¹H NMR δ 7.42-7.47 (m); ¹⁹F NMR -112 ppm (s) (ϕ^* 0.0 ppm for CFCl₃); MS, m/e 254 (16), 127 (100), 77 (13); HRMS calcd 254.0718, found 254.0708.

1,1,2,2-Tetrafluoro-1-(p-tolyl)-2-phenylethane: mp 102– 103 °C (lit.⁵ 102–103 °C); ¹H NMR δ 2.37 (3H, s), 7.17–7.46 (9H, m); ¹³C NMR δ 21.32 (s), 116.68 (tt, $J_{C-F} = 249.7.1$ Hz, $zJ_{C-F} = 33.4$ Hz), 116.83 (tt, $J_{C-F} = 253.1$ Hz, ${}^{2}J_{C-F} = 36.4$ Hz), 126.99 (t, ${}^{3}J_{C-F} = 6.3$ Hz), 126.96 (t, ${}^{3}J_{C-F} = 6.5$ Hz), 128.03, 128.76, 130.82, 131.0 (t, ${}^{2}J_{C-F} = 24.0$ Hz), 131.0 (t, ${}^{2}J_{C-F} = 20.6$ Hz), 141; ¹⁹F NMR –111.35, -111.75 ppm; MS, m/e 268 (9), 141 (100), 127 (21), 91 (8); HRMS calcd 268.0875, found 268.0872.

1,1,2,2-Tetrafluoro-1-(*p*-trifluoromethylphenyl)-2phenylethane: mp 48 °C (lit.⁵ 45-48 °C); ¹H NMR δ 7.38– 7.71 (m); ¹³C NMR 116.07 (tt, $J_{C-F} = 251.2$ Hz, ${}^{2}J_{C-F} = 36.2$ Hz), 116.5 (tt, $J_{C-F} = 252.7$ Hz, ${}^{2}J_{C-F} = 36.3$ Hz), 123.6 (q, $J_{C-F} =$ 272.45 Hz), 125.16 (t, ${}^{3}J_{C-F} = 3.01$ Hz), 126.90 (t, ${}^{3}J_{C-F} = 6.4$ Hz), 127.63 (t, ${}^{3}J_{C-F} = 6.8$ Hz), 128.3, 130.27 (t, ${}^{2}J_{C-F} = 32.4$ Hz), 131.27 (d, ${}^{3}J_{C-F} = 4.1$ Hz), 133.10 (q, ${}^{2}J_{C-F} = 3.2$ Hz), 134.56 (t, ${}^{2}J_{C-F} = 25.6$ Hz); ¹⁹F NMR -63.02, -111.50, -111.98 ppm; MS *m/e* 322 (8), 303 (10), 195 (13), 127 (100); HRMS calcd 322.0592, found 322.0608.

1,1,2,2-Tetrafluoro-1-(*p*-fluorophenyl)-2-phenylethane: mp 115–116 °C; ¹H NMR δ 7.05–7.12 (m), 7.43 (m); ¹³C NMR 115.31 (d, ²J_{C-F} = 22.0 Hz), 116.39 (tt, J_{C-F} = 252.7 Hz, ²J_{C-F} = 36.2 Hz), 116.5 (tt, J_{C-F} = 252.7 Hz, ²J_{C-F} = 36.0 Hz), 126.9 (t, ³J_{C-F} = 6.4 Hz), 128.14, 129.27 (q, ²J_{C-F} = 6.4 Hz), 131.0 (t, ³J_{C-F} = 1.1 Hz), 164.3 (d, J_{C-F} = 250.9 Hz); ¹⁹F NMR -109.16, -111.11 ppm; MS, *m/e* 272 (19), 145 (96), 127 (100); HRMS calcd 272.0624, found 272.0624.

1,1,2,2-Tetrafluoro-1-(p-methoxyphenyl)-2-phenylethane: mp 38-39 °C; ¹H NMR δ 3.84 (s), 7.33-7.44 (m); ¹³C NMR 55.3, 113.47, 116.75 (tt, $J_{C-F} = 251.3$ Hz, $^2J_{C-F} = 36.5$ Hz), 116.83 (tt, $J_{C-F} = 251.32$ Hz, $^2J_{C-F} = 35.6$ Hz), 122.97 (t, $^2J_{C-F} = 25.3$ Hz), 126.9 (t, $^3J_{C-F} = 6.5$ Hz), 128.0, 128.5 (t, $^3J_{C-F} = 6.5$ Hz), 130.8, 131.65 (t, $^2J_{C-F} = 18.6$ Hz), 161.4; ¹⁹F NMR -110.81, -111.84 ppm; MS, m/e 284 (8), 157 (100), 127 (20), 114 (13); HRMS calcd 284.0824, found 284.0815.

1,1,2,2,-Tetrafluoro-1-phenylbutane: ¹H NMR δ 1.07 (3H, t, J = 7.4 Hz), 1.89–2.19 (2H, m), 7.43 (5H, br m); ¹⁹F NMR -112.30 (2F, s), -117.40 ppm (2F, t, ${}^{3}J_{H-F} = 18.45$ Hz); MS, m/e 206 (20), 127 (100); HRMS calcd 206.0716, found 206.0712.

trans-1,1,2-Trifluoro-1-phenyl-2-butene: ¹H NMR δ 1.62– 1.69 (3H,m), 5.29 (1H, d quartet, ${}^{3}J_{H-H} = 6.8$ Hz, ${}^{3}J_{H-F} = 34.40$ Hz), 7.52 (5H, m); ¹⁹F NMR -99.98 (2F, d, ${}^{3}J_{F-F} = 18.82$ Hz), -131.51 ppm (1F, quintet, ${}^{3}J_{F-F} = 19.17$ Hz, ${}^{3}J_{F-H} = 33.50$ Hz); MS, m/e 186 (100), 171 (55), 108 (16), 151 (30), 127(80), 108 (16); HRMS calcd 186.0657, found 186.0649.

Acknowledgment. Support of our work by the National Institute of Health is gratefully acknowledged.

⁽¹¹⁾ For safety precautions, see: (a) Finkel, A. J. Adv. Fluorine Chem. 1973, 7, 199. (b) Trevino, M. A.; Herrman, G. H.; Sprout, W. L. J. Occup. Med. 1983, 25, 861.

⁽¹²⁾ Hasek, W. R.; Smith, W. G.; Engelhardt, V. A. J. Am. Chem. Soc. 1960, 82, 543.